Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 869
1.
Anal Chem ; 96(16): 6311-6320, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38594017

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Glycosphingolipids , Liver , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Glycosphingolipids/metabolism , Glycosphingolipids/chemistry , Liver/metabolism , Liver/parasitology , Cricetinae , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Mesocricetus , Chromatography, Liquid , Male
2.
J Agric Food Chem ; 71(47): 18578-18586, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-37966061

Glycosphingolipids participate in brain development, intestinal tract maturation, and defense against gut pathogens. Here, we performed a qualitative and quantitative comparison of milk glycosphingolipids from secretors and nonsecretors. Hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry was employed, along with an internal standard, to resolve the complications presented by the fact that glycosphingolipids are structurally diverse, varying in glycan composition and ceramide. In total, 101 glycosphingolipids were detected, of which 76 were reported for the first time, including fucose-modified neutral glycosphingolipids. Seventy-eight glycosphingolipids differed significantly between secretor and nonsecretor milk (p < 0.05), resulting in higher levels of certain neutral species (p < 0.001) but lower levels of fucose-modified monosialylated and disialylated species in secretor mothers (p < 0.01). In both milk types, the most abundant glycosphingolipids were of the monosialylated type, followed by disialylated, neutral, and trisialylated ones. Notably, fucose-modified monosialylated glycosphingolipids accounted for the highest proportion.


Milk, Human , Tandem Mass Spectrometry , Female , Humans , Milk, Human/chemistry , Fucose , Glycosphingolipids/chemistry , Mothers , Oligosaccharides/chemistry
3.
FEBS Open Bio ; 13(9): 1625-1635, 2023 09.
Article En | MEDLINE | ID: mdl-37335950

Glycosphingolipids (GSLs) are comprised of glycans (oligosaccharides) linked to a lipid containing a sphingosine moiety. They are major membrane components in cells of most animals, and importantly, they also occur in parasitic protozoans and worms that infect people. While the endogenous functions of the GSLs in most parasites are elusive, many of these GSLs are recognized by antibodies in infected human and animal hosts, and thus, their structures, biosynthesis, and functions are of great interest. Such knowledge of GSLs could lead to new drugs and diagnostics for treating infections, as well as novel vaccine strategies. The diversity of GSLs recently identified in such infectious organisms and aspects of their immune recognition are major topics of this review. It is not intended to be exhaustive but to highlight aspects of GSL glycans in human parasites.


Glycosphingolipids , Parasites , Animals , Humans , Glycosphingolipids/chemistry , Antibodies , Polysaccharides
4.
Carbohydr Polym ; 312: 120795, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37059535

Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.


Glycosphingolipids , Tandem Mass Spectrometry , Humans , Animals , Glycosphingolipids/chemistry , G(M1) Ganglioside/analysis , Gangliosides/analysis , Gangliosides/chemistry , Milk, Human/chemistry , Goats
5.
J Biol Chem ; 299(3): 102923, 2023 03.
Article En | MEDLINE | ID: mdl-36681125

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Glycosphingolipids , Pancreatic Neoplasms , Humans , Chromatography, Liquid , Chromatography, Thin Layer , Gangliosides/chemistry , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/physiopathology , Sulfoglycosphingolipids/chemistry , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/physiopathology , Tandem Mass Spectrometry , Biomarkers, Tumor/metabolism
6.
Methods Mol Biol ; 2613: 127-144, 2023.
Article En | MEDLINE | ID: mdl-36587076

This chapter describes the protocols for mass spectrometry (MS) applied to the structural characterization of neutral glycosphingolipids (GSLs) and the determination of neutral GSL contents in biological materials. The structural characterization is performed by thin layer chromatography-matrix assisted laser desorption ionization/mass spectrometry (TLC-MALDI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) with reversed phase separation. The content determination is carried out by LC-ESI/MS with multiple reaction monitoring (MRM). These protocols provide clues for the functions of neutral GSLs at the level of a single GSL molecular species.


Neutral Glycosphingolipids , Neutral Glycosphingolipids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Electrospray Ionization , Chromatography, Liquid , Chromatography, Thin Layer/methods , Glycosphingolipids/chemistry
7.
Adv Neurobiol ; 29: 333-390, 2023.
Article En | MEDLINE | ID: mdl-36255681

Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).


Glycosphingolipids , Lysosomal Storage Diseases , Animals , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Gangliosides/chemistry , Gangliosides/metabolism , Acid Ceramidase , Sphingomyelins , Sulfoglycosphingolipids , N-Acetylneuraminic Acid , Chondroitin Sulfates , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Ceramides , Cholesterol , Glycosyltransferases , Glycoproteins , Glycoside Hydrolases , Mammals/metabolism
8.
Anal Chem ; 94(46): 16042-16049, 2022 11 22.
Article En | MEDLINE | ID: mdl-36367338

Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB5) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles. We find that direct ESI-MS analysis of CTB5 binding to GM1 is unreliable due to non-uniform response factors, incomplete extraction of bound GM1 in the gas phase, and nonspecific CTB5-GM1 interactions. Conversely, indirect proxy ligand ESI-MS measurements show that the intrinsic (per binding site) association constants of CTB5 for PDs, NDs, and SMALPs are similar and comparable to the affinity of soluble GM1 pentasaccharide (GM1os). The observed affinity decreases with increasing GM1 content due to molecular crowding stemming from GM1 clustering. Unlike the smaller model membranes, the observed affinity of CTB5 toward GM1 liposomes is ∼10-fold weaker than GM1os and relatively insensitive to the GM1 content. GM1 glycomicelles exhibit the lowest affinity, ∼35-fold weaker than GM1os. Together, the results highlight experimental design considerations for quantitative GBP-GSL binding studies involving multisubunit GBPs and factors to consider when comparing results obtained with different membrane systems. Notably, they suggest that bilayer islands with a low percentage of GSL, wherein clustering is minimized, are ideal for assessing intrinsic strength of GBP-GSL interactions in a membrane environment, while binding to liposomes, which is sub-optimal due to extensive clustering, may be more representative of authentic cellular environments.


G(M1) Ganglioside , Glycosphingolipids , Cholera Toxin/chemistry , G(M1) Ganglioside/chemistry , Glycosphingolipids/chemistry , Liposomes , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
9.
Glycoconj J ; 39(6): 789-795, 2022 Dec.
Article En | MEDLINE | ID: mdl-36103104

A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch's partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.


Glycosphingolipids , Sulfoglycosphingolipids , Glycosphingolipids/chemistry , Mass Spectrometry , Cholesterol , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
Mov Disord ; 37(10): 2129-2134, 2022 10.
Article En | MEDLINE | ID: mdl-35876461

BACKGROUND: Alteration in glycosphingolipids (GSLs) in Parkinson's disease (PD) still needs to be determined. OBJECTIVES: We evaluated if PD subjects show abnormal GSLs levels compared to healthy controls (HC) and if GSLs correlate with clinical features. METHODS: We analyzed GSLs and glucosylceramide (GlcCer) in plasma using two normal-phase high-performance liquid chromatography assays; clinico-demographic data were extracted. RESULTS: Eighty PD subjects and 25 HCs were analyzed. Levels of GlcCer, GD1b, Gb4, GalNAcGA1, and b-series were higher in PD patients than in HCs; total GSLs, GT1b, GM1a, GM3, GM2, and a-series levels were lower in PD patients than in HCs. Changes in GSLs were present in PD subjects, with GlcCer levels similar to those in HCs. The results were similar after excluding certain GBA1 mutation carriers. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III, correlated with Gb4 and Montreal Cognitive Assessment with GD1b levels. CONCLUSIONS: Multiple GSL abnormalities in plasma were detected in patients with and without GlcCer changes, indicating a broader shift in lipid homeostasis. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Parkinson Disease , Glucosylceramides , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Humans , Mental Status and Dementia Tests , Parkinson Disease/genetics , Plasma/chemistry
11.
Biochem Biophys Res Commun ; 617(Pt 1): 36-41, 2022 08 20.
Article En | MEDLINE | ID: mdl-35671609

N-glycosylation is a posttranslational modification that influences many protein properties, such as bioactivity, folding or solubility. The same principles apply to key enzymes in glycosylation pathways, including glycosyltransferases, that also undergoing N-glycosylation, changes in which may affect their activity. Human Gb3/CD77 synthase (encoded by A4GALT) is a Golgi-resident glycosyltransferase, which catalyzes the synthesis of Galα1→4Gal disaccharide on glycosphingolipid- and glycoprotein-derived acceptors, creating Gb3 or P1 antigens and P1 glycotopes (Galα1→4Galß1→4GlcNAc-R), respectively. The molecules that contain Galα1→4Gal serve as receptors for pathogens and Shiga toxins, which are the major virulence factors of Shiga toxin-producing Escherichia coli (STEC). Human Gb3/CD77 synthase contains two N-glycosylation sites at positions N121 and N203. Using the recombinant soluble glycovariants of human Gb3/CD77 synthase with mutated N-glycosylation sequons expressed in HEK293E cells, we show that the glycovariants devoid of N-glycan at position N203 or simultaneously at N121 and N203 sites reveal no enzymatic activity. In contrast, the N-glycan at position N121 plays a negligible role, whereas the presence of both N-glycans is required for efficient secretion of the enzyme. Moreover, utilizing specific glycosidases, we have found that the fully N-glycosylated enzyme contains one complex and one hybrid/oligomannose N-glycan, while single mutants contain only the complex type. Finally, in silico analysis using the AlphaFold enzyme model showed that N-glycan attached to N203 sequon is located in a protein motif near the active site and may allosterically influence the activity. All these findings highlight the prerequisite role of N-glycosylation in human Gb3/CD77 synthase activity (N203 sequon) and solubility (both N121 and N203), with a particularly prominent role of N-glycan at position N203 in the regulation of enzyme activity.


Galactosyltransferases , Glycosphingolipids , Galactosyltransferases/metabolism , Glycosphingolipids/chemistry , Glycosylation , Humans , Polysaccharides
12.
Biosci Biotechnol Biochem ; 86(8): 974-984, 2022 Jul 22.
Article En | MEDLINE | ID: mdl-35675217

Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.


Glycolipids , Glycoside Hydrolases , Animals , Ceramides/metabolism , Glycoside Hydrolases/chemistry , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Mammals/metabolism , Oligosaccharides
13.
Chem Asian J ; 17(16): e202200403, 2022 Aug 15.
Article En | MEDLINE | ID: mdl-35616406

Glycosphingolipids (GSLs) play essential roles in many important biological processes, making them attractive synthetic targets. In this paper, a viable chemoenzymatic method is described for the synthesis of globo-series GSLs, namely, Gb4, Gb5, SSEA-4, and Globo H. The strategy uses a chemically synthesized lactoside acceptor equipped with a partial ceramide structure that is uniquely extended by glycosyltransferases in a highly efficient one-pot multiple enzyme (OPME) procedure. A direct and quantitative conversion of Gb4 sphingosine to Globo H sphingosine is achieved by performing two-sequential OPME glycosylations. A reduction and N-acylation protocol allows facile incorporation of various fatty acids into the lipid portions of the GSLs. The chemically well-defined lipid-modified Globo H-GSLs displayed some differences in their immunosuppressive activities, which may benefit the structural modifications of Globo H ceramides in finding new types of immunosuppressive agents. The strategy outlined in this work should be applicable to the rapid access to other complex GSLs.


Glycosphingolipids , Sphingosine , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Immunosuppressive Agents/pharmacology
14.
Langmuir ; 38(18): 5874-5882, 2022 05 10.
Article En | MEDLINE | ID: mdl-35439015

The glycosphingolipid Gb3 is a specific receptor of the bacterial Shiga toxin (STx). Binding of STx to Gb3 is a prerequisite for its internalization into the host cells, and the ceramide's fatty acid of Gb3 has been shown to influence STx binding. In in vitro studies on liquid ordered (lo)/liquid disordered (ld) coexisting artificial membranes, Shiga toxin B (STxB) binds solely to lo domains, thus harboring Gb3 concomitant with an observed lipid redistribution process. These findings raise the question of how the molecular structure of the fatty acid of Gb3 influences the interaction of Gb3 with the different lipids preferentially either found in the lo phase, namely, sphingomyelin and cholesterol, or in the ld phase. We addressed this question by using a series of synthetically available and unlabeled Gb3 glycosphingolipids carrying different long chain C24 fatty acids (saturated, monounsaturated, and α-hydroxylated). In conjunction with surface tension experiments on Langmuir monolayers, we quantified the excess of free energy of mixing of the different Gb3 species in monolayers composed of either sphingomyelin or cholesterol or composed of a fluid phase lipid (DOPC). From a calculation of the total free energy of mixing, we conclude that mixing of the saturated Gb3 species with the ld lipid DOPC is energetically less favorable than all other combinations, while the unsaturated species mix equally well with the lo phase lipids sphingomyelin and cholesterol and the ld phase lipid DOPC. Furthermore, we found that STxB partially penetrates in mixed lipid monolayers (DOPC/sphingomyelin/cholesterol) containing the Gb3 sphingolipid with a saturated or a monounsaturated C24 fatty acid. The maximum insertion pressure, as a measure for protein insertion, is >30 mN/m for both Gb3 molecules and is not significantly different for the two Gb3 species.


Bacterial Toxins , Glycosphingolipids , Cholesterol , Fatty Acids/chemistry , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Lipid Bilayers/chemistry , Shiga Toxins , Sphingomyelins
15.
Mol Cell Proteomics ; 21(6): 100239, 2022 06.
Article En | MEDLINE | ID: mdl-35489554

Colorectal cancer (CRC)-associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano-liquid chromatography coupled with electrospray ionization-mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC.


Colorectal Neoplasms , Glycosphingolipids , Cell Differentiation , Cell Line , Colorectal Neoplasms/genetics , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Glycosyltransferases/genetics , Humans , Phenotype , Polysaccharides/metabolism
16.
J Proteome Res ; 21(4): 1029-1040, 2022 04 01.
Article En | MEDLINE | ID: mdl-35168327

Aberrant expression of certain glycosphingolipids (GSLs) is associated with the differentiation of acute myeloid leukemia (AML) cells. However, the expression patterns of GSLs in AML are still poorly explored because of their complexity, the presence of multiple isomeric structures, and tedious analytical procedures. In this study, we performed an in-depth GSL glycan analysis of 19 AML cell lines using porous graphitized carbon liquid chromatography-mass spectrometry revealing strikingly different GSL glycan profiles between the various AML cell lines. The cell lines of the M6 subtype showed a high expression of gangliosides with α2,3-sialylation and Neu5Gc, while the M2 and M5 subtypes were characterized by high expression of (neo)lacto-series glycans and Lewis A/X antigens. Integrated analysis of glycomics and available transcriptomics data revealed the association of GSL glycan abundances with the transcriptomics expression of certain glycosyltransferases (GTs) and transcription factors (TFs). In addition, correlations were found between specific GTs and TFs. Our data reveal TFs GATA2, GATA1, and RUNX1 as candidate inducers of the expression of gangliosides and sialylation via regulation of the GTs ST3GAL2 and ST8SIA1. In conclusion, we show that GSL glycan expression levels are associated with hematopoietic AML classifications and TF and GT gene expression. Further research is needed to dissect the regulation of GSL expression and its role in hematopoiesis and associated malignancies.


Glycosphingolipids , Leukemia, Myeloid, Acute , Cell Differentiation , Cell Line , Glycomics/methods , Glycosphingolipids/chemistry , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Polysaccharides/metabolism
17.
Molecules ; 27(3)2022 Jan 24.
Article En | MEDLINE | ID: mdl-35164008

Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.


Glycosphingolipids/cerebrospinal fluid , Glycosphingolipids/chemistry , N-Acetylneuraminic Acid/chemistry , Adult , Carbohydrate Sequence , Gangliosides/cerebrospinal fluid , Gangliosides/chemistry , Humans , Ion Mobility Spectrometry , Isomerism , Meningitis/cerebrospinal fluid , Meningitis/diagnosis , Models, Molecular , N-Acetylneuraminic Acid/cerebrospinal fluid , Tandem Mass Spectrometry/methods
18.
Biochim Biophys Acta Biomembr ; 1864(1): 183749, 2022 02 01.
Article En | MEDLINE | ID: mdl-34506795

Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aß(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aß(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aß(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).


Amyloid beta-Peptides/chemistry , Gangliosides/chemistry , Glycosphingolipids/chemistry , Membrane Lipids/chemistry , Nanostructures/chemistry , Peptide Fragments/chemistry , Amyloid/chemistry , Amyloid beta-Peptides/ultrastructure , Microscopy, Atomic Force , Nanostructures/ultrastructure , Peptide Fragments/ultrastructure , Phosphatidylcholines/chemistry , Surface Properties
19.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article En | MEDLINE | ID: mdl-34893541

GBA1 mutations that encode lysosomal ß-glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher disease (GD) and are strong risk factors for synucleinopathies, including Parkinson's disease and Lewy body dementia. Only a subset of subjects with GBA1 mutations exhibit neurodegeneration, and the factors that influence neurological phenotypes are unknown. We find that α-synuclein (α-syn) neuropathology induced by GCase depletion depends on neuronal maturity, the physiological state of α-syn, and specific accumulation of long-chain glycosphingolipid (GSL) GCase substrates. Reduced GCase activity does not initiate α-syn aggregation in neonatal mice or immature human midbrain cultures; however, adult mice or mature midbrain cultures that express physiological α-syn oligomers are aggregation prone. Accumulation of long-chain GSLs (≥C22), but not short-chain species, induced α-syn pathology and neurological dysfunction. Selective reduction of long-chain GSLs ameliorated α-syn pathology through lysosomal cathepsins. We identify specific requirements that dictate synuclein pathology in GD models, providing possible explanations for the phenotypic variability in subjects with GCase deficiency.


Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Brain/drug effects , Brain/metabolism , Cathepsins/metabolism , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Inositol/analogs & derivatives , Inositol/toxicity , Lysosomes/metabolism , Mice , Time Factors , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
20.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article En | MEDLINE | ID: mdl-34445349

Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.


Adrenoleukodystrophy/metabolism , Fibroblasts/metabolism , Glycosphingolipids/metabolism , Adrenoleukodystrophy/pathology , Biopsy , Case-Control Studies , Cells, Cultured , Fatty Acids/chemistry , Fatty Acids/metabolism , Female , Fibroblasts/pathology , Glycosphingolipids/chemistry , Humans , Male , Skin/metabolism , Skin/pathology
...